|
domingo,
28 de
octubre de
2007 |
Problemas y soluciones
El objetivo del problema es distribuir los primeros ocho números (1, 2, 3, 4, 5, 6, 7 y 8) en los círculos indicados en el dibujo, de manera tal de que no haya ningún par de números consecutivos unidos por un segmento. ¿Se podrá? ¿O no?
Muchas veces en la vida cotidiana uno tiene un problema pero no sabe si tiene solución. Lo que tiene, entonces, es un problema para resolver, pero además, y mucho más importante, uno no sabe si el problema tiene solución. Lo cual representa otro problema.
Es muy común en los colegios que a uno le planteen un problema, pero le advierten que tiene solución, o se infiere del contexto. Ningún profesor o maestro pone en una prueba ejercicios para resolver cuya solución no conozcan. Muy diferente? muy diferente? es no saber si cuando uno busca y no encuentra es porque no existe o porque intentó mal, o no tuvo suerte, o eligió el camino equivocado.
La tentación que tengo es, entonces, plantear el problema de arriba y preguntar si tiene solución o no. Claro, en caso de que alguien diga que no tiene solución, tendrá que demostrarlo. Es decir, no alcanzará con que diga que intentó mucho tiempo y no la encontró. Eso no prueba nada. O en todo caso, sí. Prueba que usted intentó mucho. Pero nada más. Podría venir otra persona y resolverlo. En cambio, si usted pudiera probar que el problema no tiene solución, entonces será indistinto el tiempo que uno le dedique, o la persona de que se trate. No existiría solución y, por lo tanto, no se la podría encontrar.
Por otro lado, si uno dice que tiene solución, debería poder exhibirla. O, en todo caso, demostrar que sabemos que tiene solución ofreciendo argumentos. Lo dejo (por un rato) con la pregunta.
enviar nota por e-mail
|
|
|